Metropolis Algorithm
Simple Metropolis algo based on Markow chain theory
- Probability - \(P_i(t)\)
- Transition probabilty
- \(w(i\rightarrow j)\) (stochastic matrix or transition probability)
- \(\Sigma_j w_{ij} = 1\) Largest Eigenvalue \(\lambda_{max} = 1\)
- Example (of stochastic matrix:): \(w = [1/3 1 2/3][0 0 1/3][2/3 0 0]\)
- \(\Sigma_i P_i(t) = 1\)
- Markow Chain:
- \(P_i(t+\epsilon) = \Sigma_j w(j \rightarrow i) P_j(t)\)
- Know/Have a model:
- \(P_i(t + \epsilon) \rightarrow P_T(\vec{k}_j \alpha) = \frac{|\psi_T(\vec{k}_j \alpha)|^2}{\int d\vec{k} |\psi_T(\vec{k}_j \alpha)|^2}\)
- Metropolis test: we accept new move if \(\omega \in [0,1]\), \(\omega \leq \frac{P_T(\vec{k'};\vec{a})}{P_T(\vec{k};\vec{a})}\)